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This article introduces the concept of intrinsic entropy, S, of a molecular collision. Defined in rigorously
quantum mechanical terms as the von Neumann entropy of the intrinsic density matrices of reagents and
products, the intrinsic entropy is a dimensionless number in the 0 e S e 1 range. Its limits are associated
with situations where the collision cross section is due to a single combination of reagent and product
polarizations (S ) 0) or where there is absolutely no selectivity with respect to the molecular polarizations
(S ) 1). The usefulness of the intrinsic entropy as a quantifier of the sensitivity of a molecular collision to
molecular polarizations is demonstrated with examples for the benchmark H + D2 reaction.

1. Introduction

Molecular collisions pervade virtually all of chemistry. This
makes them a primary target for the sort of investigations whose
ultimate goals are deep and thorough understanding and
characterization of the fundamental processes underpinning
chemical phenomena. A preferred modus operandi of these
investigations is to consider isolated (gas-phase) collisions
between atoms and small molecules, which are the most
amenable to detailed and accurate experimental or theoretical
studies. Particular attention is paid to intra- and intermolecular
interactions, represented by the potential energy surface(s) that
influence the motion of nuclei, and to the unfolding of that
motion (the collision dynamics) as the collision partners
approach, interact, and recoil.1

The properties that quantify the collision dynamics can be
divided in two broad classes: scalar and vector.1,2 Scalar
properties are those that do not depend on spatial directions;
prime examples are the integral cross section (roughly speaking,
the collision probability regarded as a function of the collision
energy and the atomic and molecular states) and the product
state distribution. Vector properties do depend on spatial
directions; prime examples are the differential cross section
(DCS, roughly speaking, the collision probability regarded as
a function also of the scattering angle, which is the angle
between the relative velocities of reagents and products) and
the various polarization-dependent (or tensor) cross sections.
These are cross sections that, on top of the parameters listed
above, also depend on the multipolar (or tensorial) components
of the atomic and molecular polarizations (spatial distributions
of angular momenta and internuclear axes).3,4

Since vector properties provide additional, more detailed
information about the collision dynamics, their importance has
long been recognized.5,6 Furthermore, since the theoretical but
especially the experimental techniques for their study have
steadily progressed, the interest in and activity around vector
properties have steadily increased.7 A problem that remains,

however, is that stereodynamics studies (that is, studies of vector
properties of molecular collisions) can, and almost invariably
do, involve a vast amount of data. One pressing question, for
experimentalists and theoreticians alike, is the following: where
is the interesting information? At heart, this is a question about
the sensitivity of the collision stereodynamics to its parameters
(collision energy, initial state, final state, scattering angle). What
one wants to know is whether there are particular regions of
the parameter space where the parameter values are highly
correlated, or where the reaction properties are strongly de-
pendent on the parameter values.

In this article we introduce a concept that should prove useful
in addressing this question. For reasons to be made clear later,
we call it the intrinsic collision entropy. For a given combination
of parameters other than the molecular (reagent and product)
polarizations, the intrinsic collision entropy (S) is a dimension-
less number that can be defined so as to lie in the 0 e S e 1
range, with the lower and upper limits having well-defined
meanings. If S ) 0, the collision cross section is entirely due
to a single combination of reagent and product polarizations. If
S ) 1, all reagent and product polarizations that can contribute
to the collision cross section do so equally s that is, there is
absolutely no selectivity with respect to the molecular polariza-
tions. We should also mention that the intrinsic entropy is fully
defined within the framework of quantum mechanics and that
its calculation does not require any approximation.

Although the intrinsic entropy may prove to be important on
its own, the point we want to make in this article is that this
quantity allows one to completely bypass the explicit consid-
eration of molecular polarizations in the analysis of the
sensitivity of a collision to stereodynamical parameters. Fur-
thermore, the intrinsic entropy precisely and unambiguously
quantifies the sensitivity of the collision to molecular polariza-
tions. A question such as “how sensitive is this collision to
molecular polarization?” can be answered not only with
qualitative terms such as “very” or “not so much”, but also with
a number whose value must lie between zero and one.

The remainder of the article is organized as follows. Section
2 is devoted to the theory; it starts with brief reviews of two
concepts that are essential for the definition of the intrinsic
collision entropy (intrinsic collision properties11,12 and canonical
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collision mechanisms12) before turning to the definition of the
intrinsic entropy itself. Section 3 presents numerical examples,
all of which refer to H + D2f HD + D, the simplest and best
characterized of all reactive molecular collisions.13 Section 4
closes the paper with a summary of its main points and an
outlook.

2. Theory

2.1. Intrinsic Collision Properties. We have discussed the
need for distinguishing the intrinsic, extrinsic, and observable
properties of molecular collisions in past publications;11,12 what
follows is but a short review.

The intrinsic properties of a collision are those that describe
the collision process itself rather than a particular experimental
realization of it. For example, a collision may have the following
intrinsic property: its cross section is maximum when the
reagents approach each other with a particular mutual orienta-
tion. This particular collision geometry is characteristic of the
collision and completely independent of experimental observa-
tions; in fact, it is even independent of whether an experimental
technique that can make the reagents approach each other and
collide in the specified way actually exists. In metaphorical
terms, one could say that intrinsic properties are associated with
what the collision “wants” rather than with what the collision
“gets”.

In contrast, the extrinsic properties of a collision describe a
particular experimental setup rather than characteristics of the
collision process itself. For example, let us imagine an experi-
ment in which the reagents are prepared so as to approach each
other with a particular mutual orientation. This particular
collision geometry is characteristic of the experiment and
independent of the collision dynamics. It is therefore an extrinsic
property. In metaphorical terms, one could say that extrinsic
properties are associated with what the collision “gets” rather
than with what the collision “wants”.

The measurable properties of a collision result from the
interplay between intrinsic and extrinsic properties; in the
metaphorical terms used above, from the balance between what
the collision “wants” and what it “gets.” For example, the value
of the collision cross section measured in the experiment
described in the previous paragraph would depend on how the
reagents were prepared (that is, on the extrinsic properties of
the collision) but also on the extent to which the collision
dynamics favors or disfavors the experimentally selected
collision geometry (this is an intrinsic property of the collision).

When a theoretician performs a quantum scattering calcula-
tion, the main output of the calculation is the scattering matrix.
The elements of this matrix are probability amplitudes for the
transitions between all the possible initial (reagent) and final
(product) states. As the scattering matrix elements are indepen-
dent of any experimental consideration, they are fully intrinsic
quantities. As a consequence, every collision property that
depends on no dynamical parameter other than the scattering
matrix elements is also an intrinsic property. As we will see
below, this is indeed the case for the intrinsic collision entropy.

When a theoretician performs a wavepacket calculation, he
or she must decide on the form of the initial wavepacket. As
this theoretician-made decision is independent of the collision
dynamics, the form of the initial wavepacket is an extrinsic
property of the collision. The observed wavepacket evolution
results from a combination of extrinsic and intrinsic factors
(respectively, initial wavepacket form and collision dynamics).
Note, however, that one can use wavepacket calculations to
obtain values of scattering matrix elements.14 This shows that

although the values of intrinsic properties cannot be directly
observed, they can be inferred from the values of observed and
extrinsic properties. In principle, this should also be the case in
experimental studies. In practice, however, it would be difficult
because of the large amount of experimental information
required.

Let us consider a mathematical example. We assume that a
quantum scattering calculation has been performed for a reactive
collision, A + BCf AB + C. This resulted in a set of scattering
matrices whose elements, Spnrm

JE , are labeled by the total angular
momentum quantum number (J), by the total energy (E), and
by two collective indices. The rm collective index singles out
one of the states of the reagent basis set used in the calculation,
{|rm〉,m ) 1, 2, ...}. Similarly, pn singles out one of the states
of the product basis set used in the calculation, {|pn〉,n )
1, 2, ...}.

Let us now consider two collision experiments, a and b, in
which two different reagent states are used:

We assume that the |r1〉 and |r2〉 basis states are degenerate,
which implies that the |Ψa〉 and |Ψb〉 states are time-independent.

If summed over product states, the integral cross sections of
the two experiments are respectively given by

where N is a flux factor. Note the following:
• The scattering matrix elements depend on the reaction under

study, but not in any way on the “experimental” reagent
states, |Ψa〉 and |Ψb〉. The values of the scattering matrix
elements are intrinsic to the reaction.

• The “experimental” reagent states are chosen arbitrarily and
do not depend on the quantum scattering results. In
particular, they need not coincide with any of the reagent
basis states used in the scattering calculation. The “experi-
mental” reagent states are extrinsic to the reaction.

• The integral cross section is a measurable property whose
value depends on the (intrinsic) scattering matrix elements
and also on the (extrinsic) reagent states.

2.2. Canonical Collision Mechanisms. In general, molecular
collisions involve an incoherent superposition of a number of
separate coherent processes.15 For this reason, one must in
general describe the initial (reagent) and final (product) states
using density matrices rather than wave functions.16 If G and G′
are, respectively, the density matrices of reagents and products,
they are related by17

|Ψa〉 )
|r1〉 - |r2〉

√2
(1a)

|Ψb〉 )
|r1〉 + |r2〉

√2
(1b)

σa(E) ) N ∑
nJ

(2J + 1)
|Spnr1

JE - Spnr2

JE |2
2

(2a)

σb(E) ) N ∑
nJ

(2J + 1)
|Spnr1

JE + Spnr2

JE |2
2

(2b)
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where f is the scattering amplitude matrix.
If the reagents are unpolarized, their state is an equally

weighed incoherent superposition of the states in the angular
momentum-space reagent state basis set,

One has

where In is the n × n identity matrix. This result is actually
independent of the basis set chosen to describe the reagents and
implies

In general, the density matrix of eq 7 is not diagonal. The
reason is that the pure product polarization states formed in the
collisions involving each of the pure reagent states (the |bi〉
states) need not coincide with the states in the angular
momentum-space product state basis set,

However, once the G′ matrix has been obtained as indicated
above, one can easily diagonalize the matrix and thus
determine the product states that make G′ diagonal. Note the
following:

• Diagonalization of G′ is equivalent to its decomposition into
pure-state density matrices,

where the pure-state density matrices are those correspond-
ing to the eigenvectors of G′ and the wi (the statistical
weights of the pure states16) are the eigenvalues of G′.

• As every pure product state associated with a nonzero
eigenvalue must be in a one-to-one relation to a pure
reagent state,12 determination of the pure product states
implies determination of the corresponding pure reagent
states associated to them:

• Had we started this derivation using unpolarized products
and eq 4 rather than unpolarized reagents and eq 3, we
would have obtained the same results, except for an
exchange of the symbols referring to reagents or
products.

This implies that through diagonalization of either

or

(note that the two matrices have the same norm, Tr(R) ) Tr(P),
whatever the representation used for reagent and product states)
one can (i) determine all the pure states of reagents and products
that are involved in the collision, (ii) put the pure reagent and
pure product states in one-to-one correspondence, and (iii)
determine the statistical weight of each pure collision process
in the overall collision.

Let us now introduce some terminology. Since R and P are,
respectively, density matrices of reagents and products, and since
they are entirely determined by the scattering amplitude matrix
(an intrinsic quantity whose determination involves no dynami-
cal parameter other than the scattering matrix17), we shall refer
to R and P as the intrinsic density matrices of reagents and
products. Since we have a criterion (a “canon”, diagonalization
of R and P) to determine the pure asymptotic states, we shall
refer to them as the canonical states of the reagents and products
of the collision. Since each canonical reagent state is pure and
in one-to-one correspondence with an (also pure) product
canonical state, the two are related by a pure transformationsa
fully coherent collision mechanism. We shall refer to each of
these as a canonical collision mechanism.

The statistical weight of each canonical mechanism, that is,
its contribution to the overall collision, is given by the
corresponding eigenvalue (it must be the same regardless of
whether the matrix that is initially diagonalized is R or P, see
ref 12). As each of these eigenvalues is a DCS,12 we shall refer
to each of them as a canonical differential cross section (for
short, canonical DCS). Note that, because the “conventional”
DCS (the observable property resulting from collision of
unpolarized reagents) is defined as the average rather than the
sum of the DCSs associated with the various reagent substates,
the relation between the conventional and canonical DCSs reads

where dσ/dω is the conventional DCS and the dσi
(can)/dω are

the canonical DCSs.12

We should emphasize that what is unique about the canonical
mechanisms is not the decomposition of the DCS. If the
superscript referring to canonical mechanisms is discarded, eq
13 holds for every complete set of pure reagent states. This is
because, whatever the complete set of pure reagent states, it is
always true16 that

the Fi
(pure) pure-state density matrices need not be those defined

by eq 10. Instead, what is unique to the canonical decomposition
of the dynamics of a reaction is the complete separation of the
pure, independent processes that underlie it. This would not be
the case if the analysis was done, say, in terms of the rotational
substates of reagents and products. The initial and final states

G′ ) fGf† (3)

G ) f†G′f (4)

{|bi〉}, i ) 1, 2, ..., n (5)

G ) 1
n

In (6)

G′ ) 1
n

ff† (7)

{|b′i〉}, i ) 1, 2, ..., n' (8)

G′ ) ∑
i)1

n'

wiG′i
(pure) (9)

Gi
(pure) ) f†G′i

(pure)f (10)

R ) f†f (11)

P ) ff† (12)

dσ
dω

) 1
n ∑

i)1

n dσi
(can)

dω
(13)

∑
i)1

n

Gi
(pure) ) In (14)
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would be then entangled and not in one-to-one correspondence
(see Figure 1).

2.3. Intrinsic Collision Entropy. In classical probability
theory a state is a distribution of probabilities over the possible
outcomes of a measurement. If we represent it by

where the pi are the probabilities of observing the various
outcomes (they must satisfy pi g 0 and Σipi ) 1), then the
Shannon entropy,18

where k is a positive number, is only one of many possible
mathematical definitions of entropy,19 but arguably the most
telling of them all.20 Its quantum counterpart is the von Neumann
entropy,21

where G is an n × n density matrix satisfying Tr(G) ) 1 and
the wi are its eigenvalues [as density matrices are positive
semidefinite, it is always true that wi g 0; note also that the
eigenvalues of G are the statistical weights of the pure states
that are mixed in it and satisfy Σiwi ) Tr(G)]. The von Neumann
entropy is the Shannon entropy of the spectrum of G and varies

from zero for pure states to k ln n for G ) In/n, the maximally
mixed state.20

Like the Shannon entropy, the von Neumann entropy is a
functional of a state (in quantum mechanics, a state is a density
matrix), possesses a number of useful mathematical properties,22

and can be singled out from several possible definitions of
entropy by natural requirements. In the case of the von Neumann
entropy, an important “natural requirement” is that it be the
smallest entropy among all of those that could be defined as
the Shannon entropy of the probability distribution for the
eigenvalues of some observable.20

Now let us recall some of the quantities involved in the
determination of the canonical mechanisms of a collision. We
had two intrinsic density matrices, R and P, whose nonzero
eigenvalues coincide.23 These eigenvaluessthe canonical
DCSssgive the probabilities (strictly speaking, differential cross
sections) that each canonical mechanism will contribute to the
overall collision. Therefore, we can use the canonical DCSs to
define the intrinsic von Neumann entropy of a molecular
collision; we shall refer to it as the intrinsic entropy of the
collision.

The only, and very slight, complication is the following: as
defined in eqs 11 and 12, R and P do not have unit trace; their
eigenvalues, the canonical DCSs, do not add to 1. To deal with
this all one needs to do is renormalize the intrinsic density
matrices so as to have Tr(R) ) Tr(P) ) 1. We can then define
the intrinsic entropy as

where Ncan is the number of canonical collision mechanisms
and the choice of k value, eq 18b, was made so that we have 1
as the maximum S value (normalization ensures that the
minimum value is S ) 0). Note also that eq 18b, together with
the normalization of the intrinsic density matrices to unit trace,
implies that the entropy as defined here is as a dimensionless
quantity.

Like the other properties associated with canonical collision
mechanisms, the intrinsic entropy is an intrinsic property of the
collision. It gives us direct information about the dynamical
transformationsin this case, about the extent to which the
collision favors or disfavors particular canonical mechanisms,
particular pairs of canonical reagent and product states, and
particular pairs of correlated reagent and product polarizations.
Note also that the intrinsic entropy is entirely defined by the
eigenvalues of the intrinsic density matrices, R and P. Explicit
consideration of the canonical reagent and product states (the
eigenvectors of R and P, respectively) is not required.

Figure 1. Two representations of the scattering amplitude of the A +
BC(j ) 3)f AB(j′ ) 2) + C reaction; atoms A and C carry no angular
momentum, and the vibrational quantum numbers of the BC and AB
molecules are fixed. The arrows represent nonzero scattering amplitudes.
(Left) A conventional representation in terms of the helicity substates
of reagents and products (j and Ω are, respectively, angular momentum
and helicity quantum numbers; unprimed symbols refer to the BC
reagent, primed symbols to the AB product). Note that every reagent
state can be transformed into every product state; the asymptotic states
are all entangled. (Right) In the canonical representation,12 the reagent
and product states are labeled by symmetry, s (must be even, e, or
odd, o), and by decreasing order of the corresponding canonical DCS,
n [the DCS is the squared modulus of the scattering amplitude; one
has DCS(e1) g DCS(e2) g DCS(e3) g DCS(e4), and similarly for the
reactions involving odd-symmetry canonical states]. Note that the
canonical representation allows for direct identification of asymptotic
states that do not participate in the dynamics (in this example, reagent
states |e,4〉 and |o,3〉 do not react), and also that each reagent state that
does react can only be transformed into one product state; the asymptotic
states are all disentangled.

P ) (p1

p2

l
pn

) (15)

S(P) ) -k ∑
i)1

n

pi ln pi (16)

S(G) ) -kTr(G ln G) ) -k ∑
i)1

n

wi ln wi (17)

S ) -k ∑
i)1

Ncan

wi ln wi (18a)

k ) (ln Ncan)
-1 (18b)

wi )
1
s

dσi
(can)

dω
(18c)

s ) ∑
i)1

Ncan dσi
(can)

dω
(18d)
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3. Example: The H + D2 Reaction

We have written that use of the intrinsic entropy allows one
(i) to bypass the explicit consideration of molecular polarizations
in the analysis of the sensitivity of a collision to stereodynamical
parameters and (ii) to quantify that sensitivity. We shall now
provide illustration of those points, taking as our example the

isotopic variant of the hydrogen-exchange reaction (V and j are
vibrational and rotational angular momentum quantum numbers,
respectively). As “the simplest of chemical reactions”, the H3

system has long been regarded as a very important benchmark
in studies of reaction dynamics, and in particular as the first
choice for tests of new approaches to the problem. This has led
to a large number of accurate experimental and theoretical
results, to a thorough description of many aspects of its
dynamics13 and in particular to recent interesting insights into
the collision mechanisms.24-28 Its stereodynamics is less well
characterized.11

The results we present below have used as input the scattering
matrices obtained in previously reported time-independent
quantum scattering calculations run on the BKMP2 potential
energy surface.29,30 We ask our readers to consult the original
papers if they are interested in details of the scattering
calculations or potential energy surface.

Let us now turn to the examples. Figure 2 shows data for the
reaction of eq 19 when V ) V′ ) 0 and j ) j′ ) 1. The figure
is as follows:

• The data plotted are the DCS (in arbitrary units, so that it
can be considered as the sum or as the average of the
canonical DCSs) and the intrinsic entropy as functions of
the total energy and the scattering angle (respectively, Etot

and θ).
• The plot uses cylindrical coordinates.
• The radius is the total energy. Its maximum value is 1.9

eV. The outermost, black circle appears at Etot ) 2 eV.

• The cylindrical angle is θ. Its value ranges from 0 to 180°.
The directions associated with particular θ values are
identified by the tics on the outermost, black circle.

• In the top half of the plot, z is the DCS multiplied by the
volume element, sin θ.

• In the bottom half of the plot, z is the intrinsic entropy, S.
• The color indicates the value of each quantity as a fraction

of its maximum value. In the top half, the maximum is the
largest value of DCS × sin θ over all energies and
scattering angles. In the bottom half, the maximum value
is always S ) 1.

One sees, for instance, that the DCS (top half of the plot) is
relatively large in the 135° < θ < 180°, 0.5 eV < Etot < 1.5 eV
region; note that the figure only provides relative DCS
magnitudessthe actual DCS values are not specified. One also
sees that in the θ ≈ 0, Etot ≈ 0.75 eV region the intrinsic entropy
(bottom half of the plot) quickly changes from its minimum (S
) 0) to its maximum (S ) 1) value; note that here the figure
does provide the absolute S value (its maximum is always S )
1). Let us now raise some questions that can be answered by
inspection of Figure 2 and others similar to it.

Where Is the Reaction Most Sensitive to Molecular
Polarization? The answer is, where Sf 0. Inspection of Figure
2 reveals that this happens in three qualitatively distinct cases.

The first case appears near or below the total energy threshold
(Etot j 0.65 eV). This observation is not difficult to rationalize.
Near the threshold, tunneling is important. As the tunneling
probability quickly decays with barrier height and width, and
both of them depend on the approach and recoil geometries,
the reaction probability is highly sensitive to molecular polariza-
tion. Alas, the DCS in this region is small.

The second case appears when the total energy is large and
the scattering angle is in the θ ≈ 60-150° interval. In this region
the intrinsic entropy has several local minima, but they appear
where the DCS is negligibly small.

The third case is the most interesting. In a narrow total energy
interval centered at Etot ≈ 0.85 eV, the intrinsic entropy
approaches S ) 0 throughout the θ ≈ 120-180° region. In this
region the DCS is large. In fact, the two most prominent maxima
of the DCS lie close to each other and are separated precisely
by the low-entropy region we have identified (see Figure 3 for
a more detailed view). As there is no obvious reason why this
should happen, this region would be a good target for the
investigation of molecular polarization effects.

Where Is the Reaction Least Sensitive to Molecular
Polarization? The answer is, where Sf 1. Inspection of Figure
2 reveals that this happens in the forward scattering, θ ≈ 0
region. Because of the multiplication of the DCS by sin θ, Figure
2 does not allow for visualization of the DCS in this region.
We note, however, that what happens there is well-known:13

the DCS features very fast oscillations that are due to interfer-
ence effects. The information we get from Figure 2 is that the
interference effects involve all of the canonical states.

In General, How Sensitive to Molecular Polarization Is
the Reaction? Inspection of Figure 2 reveals that in the regions
where the reaction probability is large the value of the intrinsic
entropy is S ≈ 0.1-0.5. These values seem surprisingly low
(and, therefore, the stereodynamical selectivity seems surpris-
ingly high) for a reaction that no chemist would normally think
of as susceptible to pronounced steric effects. In fact, the
explanation is simple. Because we are considering a j ) j′ ) 1
case, we have only three reagent polarization states (three “p
orbitals”), only three product polarization states (three “p
orbitals” again), and only three canonical collision mechanisms.

Figure 2. Cylindrical-coordinate plots of the differential cross section
(top half) and intrinsic entropy (bottom half) of the H + D2(V ) 0,j )
1) f HD(V′ ) 0, j′ ) 1) + D reaction as a function of total energy
(radius) and scattering angle (cylindrical angle). The DCS was
multiplied by the volume element, sin θ. The color indicates the value
of each quantity as a fraction of its maximum value over all energies
and scattering angles (the numerical value of the maximum is
unspecified for the DCS, and S ) 1 for the intrinsic entropy).

H + D2(V, j) f HD(V', j') + D (19)
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Each of the canonical mechanisms involves states that in a sense
are very different from the others. This large difference between
the canonical states, and the small number of them, explain the
low intrinsic entropy, which is not so surprising after all. If the
reaction involved a larger number of canonical mechanisms,
the typical entropy should be higher. And this is indeed the
case, as one can see by inspecting Figure 4. The plots there are
as in Figure 2, but the initial and final angular momentum
quantum numbers were changed to j ) j′ ) 5. In this case there

are 11 reagent polarization states, 11 product polarization states,
and therefore 11 canonical mechanisms. As expected, the
intrinsic entropy is invariably larger than in the j ) j′ ) 1 case.
One finds that S > 0.5 wherever the DCS is not negligible.

How Does the Sensitivity to Molecular Polarization
Change with Reagent and Product States? We have seen that
if the number of canonical mechanisms increases, the sensitivity
to molecular polarizations decreases. But what if the number
of canonical mechanisms stays constant while reagent and/or
product quantum numbers change?

Figure 5 presents two examples involving change of rotational
quantum number. The situation is as in Figure 2 (where we
had V ) V′ ) 0 and j ) j′ ) 1), except that either the reagent
or else the product rotational quantum number (not both) has
been increased to 5. In the j ) 1, j′ ) 5 case there are eight
product states that are not formed, whereas in the j ) 5, j′ ) 1
case there are eight reagent polarization states that do not react.
In either case we have three canonical mechanisms, three reagent
states that do react, and three product states that are actually
formed.

Comparison of the top panel of Figure 5 to Figure 2 shows
that when only the product rotational quantum number is
changed, the intrinsic entropy values associated with rela-
tively large DCSs do not change appreciably; one finds S ≈
0.2-0.5. On the other hand, comparison of the bottom panel
of Figure 5 to Figure 2 shows that when the reagent rotational
quantum number is the one that increases, the intrinsic
entropy increase is significant; where the DCS is large, we
now find S ≈ 0.6-0.9. If we assume that other aspects of

Figure 3. A different view of the DCS (top) and intrinsic entropy (bottom) of Figure 2 in the Etot ) 0.65-1.05 eV, θ ) 120-180° region. The
two close-lying DCS × sin θ maxima are separated by a region where the intrinsic entropy is very low. Colors as in Figure 2.

Figure 4. As Figure 2, but for the H + D2(V ) 0, j ) 5) f HD(V′ )
0, j′ ) 5) + D reaction.
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the dynamics are less important, the indication is that the
reaction we are considering is more sensitive to HD than to
D2 polarization [note that although we are assuming D2 to
be a reagent and HD a product, the results we are presenting
in this section also apply to the reverse reaction, D +
HD(V′, j′) f D2(V, j) + H].

As our last example, let us consider changes of vibrational
quantum number. Figure 6 presents cases that again are
similar to that of Figure 2 (where we had V ) V′ ) 0 and j
) j′ ) 1), except that we have added one quantum of
vibration to the product diatomic (top panel of Figure 6), to
the reagent diatomic (middle panel), or to both (bottom
panel). Note that in all these cases the number of canonical
mechanisms is 2j + 1 ) 2j′ + 1 ) 3. The V * V′ cases (top
and middle panels of Figure 6) are the most striking. Where
the DCS is large the intrinsic entropy is very low; the typical
values are in the S ≈ 0-0.3 interval. Furthermore, they share
a feature that is quite distinct from what we have discussed
so far. At Etot ≈ 1-1.6 eV, the DCS has a moderate-intensity
tail that spreads all the way from the backward (θ > 90°) to

the forward (θ < 90°) hemisphere. This tail is associated with
high intrinsic entropy, S ≈ 0.6-0.9 in the V ) 1, V′ ) 0
case. Although this sort of DCS tail has attracted considerable
attention in the past,13,31 it is something of a surprise to find
it associated with a pronounced loss of selectivity with respect
to molecular polarizations.

Figure 5. As Figure 2, but for the H + D2(V ) 0, j)fHD(V′ ) 0, j′)
+ D reaction with j ) 1 and j′ ) 5 (top panel) or j ) 5 and j′ ) 1
(bottom panel).

Figure 6. As Figure 2, but for the H + D2(V, j ) 1)f HD(V′, j′ ) 1)
+ D reaction with V ) 0 and V′ ) 1 (top panel), V ) 1 and V′ ) 0
(middle panel) or V ) V′ ) 1 (bottom panel).
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4. Summary and Outlook

The intrinsic entropy, S, of a molecular collision is the von
Neumann entropy of the intrinsic density matrices of reagents
and products. Because it quantifies the distribution of the
collision probability over the independent, canonical mecha-
nisms of the collision (each of them associated with a correlated
pair of pure reagent and product polarization states), it is a
quantitative indicator of the sensitivity of the collision to the
reagent and product polarizations. When the intrinsic entropy
reaches its lower or upper limit, S ) 0 or S ) 1, that sensitivity
is, respectively, maximum or nonexistent.

The intrinsic entropy is an interesting sensitivity quantifier
not only because it is a single, dimensionless number lying in
a well-defined range, but also because its evaluation does not
require explicit consideration of molecular polarizations. As
demonstrated through exam of examples concerning state-to-
state H + D2 reactions, this makes the intrinsic entropy useful
also as a simple “filter” of the large amount of data one normally
is confronted with in stereodynamical studies.

Through cursory inspection of a few plots in which we
contrasted the differential cross section of a state-to-state H +
D2 reaction to its intrinsic entropy, we could easily locate regions
of the parameter space (more specifically, total energy and
scattering angle values) where pronounced polarization effects
take place, regions where such effects are of little relevance,
and trends associated with change of the asymptotic vibrational
and angular momentum quantum numbers. Had we tried to do
that through explicit consideration of molecular polarizations,
the task would have been challenging.

Consider, for example, the simplest of our examples: those
involving reagents and products with a single quantum of
rotational excitation (that is, j ) j′ ) 1). In these cases, the
polarizations of reagents and products are each determined by
four polarization moments (one component of the rank-1
polarization tensor, three components of the rank-2 polarization
tensor32), all of them having values dependent on the choice of
reference frames. Let us assume that under a particular
combination of energy and scattering angle there is maximum
selectivity with regard to molecular polarizations: there is a
single reagent (product) state that reacts (is formed), and reagent
(product) states with polarizations orthogonal to that do not react
(are not formed) at all. In terms of the intrinsic entropy, this is
an S ) 0 situation. In terms of polarization moments, the
situation is not immediately obvious: some polarization moments
may have large magnitude, other may be small or even zero.33

It is not necessarily the case that at least one of the polarization
moments must reach one of the extremes of its range of allowed
values, and if one or more of the polarization moments do reach
an extreme value, that does not necessarily imply that the
reaction proceeds through a single pair of reagent and product
polarization states. Even by simultaneously considering eight
polarization moments, without further analysis one cannot
conclude that this is a case of maximum sensitivity to molecular
polarization. And this is a simple case: if the angular momentum
quantum numbers were j ) j′ ) 5, one might have to consider
as many as sixty polarization moments for reagents and sixty
more for products. The bottom line is this: a set of polarization
moments is a set of numbers that collectively provide direct
quantification of molecular polarization, but not direct quanti-
fication of the sensitivity of a collision to molecular polarization.
This is done by the intrinsic collision entropy.

Studies of collision stereodynamics have long proved fertile
ground for the development of innovative theoretical approaches.
Past examples include the concept of the chemical shape of

colliding molecules,6 the stereodirected representation of the
scattering,34 the decomposition of the scattering amplitude into
near-side and far-side components,35 and others.5,9,36,37 Like all
of those, the theory of canonical collision mechanisms (and the
intrinsic entropy concept as part of it) has its advantages and
disadvantages.

There are two main advantages. First, the theory of canonical
collision mechanisms is formulated in rigorously quantum
mechanical terms; it requires no approximation, classical,
semiclassical, or otherwise. Second, it is entirely developed in
terms of intrinsic collision properties; for this reason, it provides
direct insight into the transformation that is effected by the
collision. The second advantage, however, can be seen as a
disadvantage: the predictions of the theory are not directly
observable. Intrinsic properties cannot be directly measured.
Instead, they must be inferred from the correlation between
extrinsic and observable collision properties. Albeit not impos-
sible, in general the task is experimentally difficult. We note,
however, that the canonical mechanisms theory does lead to
explicit predictions about possible and not-too-difficult experi-
mental observations (indeed, we have seen a few in this article).

We conclude with a brief consideration of possible extensions
of our approach. For good reasons, information theory uses a
plethora of entropy definitions.38 Some of these may be very
helpful in further characterizing the relations between the
asymptotic states of a collision system. Relative entropies, in
particular, have caught our attention; that happened because of
their usefulness in characterizing the geometry of the space of
states, and in particular because relative entropies are related
to the metric of this space.20 Consider, for instance, the
observation we made in section 3 regarding the “large differ-
ences” among the asymptotic canonical states when we only
had three canonical mechanisms. Those “differences” are not
related to the overlap between canonical states (canonical state
are always orthogonal12), but rather to some sort of geometric
distance. Characterization of the geometry of the space of states
associated with a collision is a project of interest to us, and we
expect to report on it in the future.
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